
US 20070220507Al

(12) Patent Application Publication (10) Pub. No.: US 2007/0220507 A1
(19) United States

Back et al. (43) Pub. Date: Sep. 20, 2007

(54) MANAGING VERSION INFORMATION FOR
SOFTWARE COMPONENTS

(75) Inventors: Alan B. Back, Redmond, WA (US);
James Aaron Holmes, Sammamish,
WA (US); Manoj Nayar, Redmond,
WA (US); Sridhar Chandrashekar,
Redmond, WA (U S)

Correspondence Address:
MICROSOFT CORPORATION
ONE MICROSOFT WAY
REDMOND, WA 98052-6399 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/384,586

(22) Filed: Mar. 20, 2006

Publication Classi?cation

(52) US. Cl. 717/170; 717/120; 717/122

(57) ABSTRACT

A system manages Version information for a group of
software components by maintaining a Version repository
containing Version information for all of the components.
The system determines a baseline for the components,
modi?es data in the repository in connection With updating
softWare components, and accesses the data in the repository
to determine Version information for the components. The
system described herein also determines if a group of
softWare components correspond to a particular baseline by
maintaining baseline information in the Version repository.
The system obtains the particular baseline for the group of
components, compares the Version information for each of
the components With a corresponding minimum Version
provided in connection With the baseline, and determines

(51) Int. Cl. Whether a group of software components correspond to the
G06F 9/44 (200601) particular baseline.

_ 72
70 1 - 1 f

‘

GET 74
‘ COMPONENT(I) f 78

; ADD NEW f
COMPONENT

V

COMP(I) EXIST ? (DONE)

TARG =

COMPU) ?

86 UPDATE f 84
I = I + 1 / COMP(I)

i DONE)

Patent Application Publication Sep. 20, 2007 Sheet 1 0f 6

VERSION
REPOSITORY

g4

40

CONSUMER
PROCESSES

A

VERSION
MODULE

;;

INSTALLATION
PROCESSES

- - - _ _ _ _.,

5%

Figure 2

US 2007/0220507 A1

Patent Application Publication Sep. 20, 2007 Sheet 2 0f 6 US 2007/0220507 A1

50 \l\4 52 \/\

COMPONENT ID 5_6_
52 r - . .
— Q T .55 VER/REL DATA 51

NEXT 2

Figure 3A
Flgure 3B

_ 72

70 \l\ 1-1 I

GET 74
‘ COMPONENTU) / 78

; ADD NEW f
COMPONENT

COMP(I)
EXIST ? @

[86

Figure 4

V

/84 UPDATE
COMP(I)

Patent Application Publication Sep. 20, 2007 Sheet 3 0f 6 US 2007/0220507 A1

100

\;\ (START)

f 102
I=l

i
GET f 104

*7 COMPONENT(I)

ERROR ‘.7

114

COMP(I)
EXIST ?

ADD TO
TABLE/LIST NO

‘ DONE)

112 116
I: I H f REPORT /

ERROR

{ DONE)

Figure 5

Patent Application Publication Sep. 20, 2007 Sheet 4 0f 6 US 2007/0220507 A1

120

COMP(I)
l EXIST ?

V

GET / 124
‘ COMPONENTO) I RETURN COMP

132 NOT FOUND

RETURN / 134
ERROR

f 138

Figure 6

Patent Application Publication Sep. 20, 2007 Sheet 5 0f 6 US 2007/0220507 A1

160

@E) W
168

comm)
EXIST ?

GET 1 64
COMPONENTU) f

f 172
ERROR

Y

REPORT/
UPDATE 178’

UPDATE LL25

‘

{ DONE ,
I=I+1

Figure 7

Patent Application Publication Sep. 20, 2007 Sheet 6 0f 6 US 2007/0220507 A1

180

BL = f 182

MOST RECENT BL

YES

BL = NEXT 186
EARLIER BL RETURN f

BL

192
BL TDO
EARLY ‘.7

NO

/ RETURN
194 ERROR

Figure 8

US 2007/0220507 A1

MANAGING VERSION INFORMATION FOR
SOFTWARE COMPONENTS

BACKGROUND

[0001] Relatively large and complex computer software
programs, such as computer operating systems, may have a
number of separate components that work together. In some
cases, maintainers of large and complex computer software
programs may provide new versions of some of the com
ponents without necessarily providing new versions of oth
ers, thus making it dif?cult to ascertain which versions of
which components work best together. Furthermore, when
the large and complex computer software program is a
computer operating system, it may be necessary for other
programs, such as application programs, to ascertain the
version of the operating system. However, this may be
dif?cult in situations where the operating system is com
prised of various components, some of which may have
different version numbers.

[0002] In addition to the potential for di?ferent version
numbers for different components, it may be desirable to
cause new components to be part of the “baseline” of a
relatively large and complex software program where the
baseline represents the collection of components, and the
minimum versions thereof, that make up the program.
However, conventional software update mechanisms, while
capable of modifying/updating existing software compo
nents, may not necessarily be capable of causing the new
components to be part of the baseline of a relatively large
and complex software program.

[0003] It is desirable to provide a system that addresses
these issues to provide better management of component
versioning and a mechanism for adding components to a
baseline for a relatively large and complex computer soft
ware program.

SUMMARY

[0004] This Summary is provided to introduce a selection
of concepts in a simpli?ed form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

[0005] The system described herein manages version
information for a group of software components by main
taining a version repository containing version information
for all of the components, determining a baseline for the
components, modifying data in the repository in connection
with updating at least one of the software components, and
accessing the data in the repository to determine version
information for the components. Accessing the data includes
determining whether each of the components has a version
number greater than or equal to a minimum version number
corresponding to a particular baseline. The group of soft
ware components may correspond to a computer operating
system.

[0006] The system described herein determines if a group
of software components correspond to a particular baseline
by maintaining a version repository containing version
information for all of the components, obtaining the par
ticular baseline for the group of components, comparing the

Sep.20,2007

version information for each of the components with a
corresponding minimum version provided in connection
with the baseline, and determining that a group of software
components corresponds to the particular baseline if each of
the components has a version number greater than or equal
to the minimum version number corresponding to the par
ticular baseline. The baseline information about the group of
components may be stored in the version repository.

[0007] The system described herein facilitates adding
components to an integrated software program having mul
tiple components by providing the integrated software pro
gram with a ?rst baseline that indicates which components
are part of the integrated software program. The system
revises the ?rst baseline to provide a second baseline, and
runs an update process on the integrated software program
using the second baseline. In response to the update process
detecting a component in the second baseline that is not in
the integrated software program, the update process causing
the component to be added to the integrated software
program.

DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is diagram illustrating a version module, a
version repository, consumer processes, installation pro
cesses, and installation data according to the system
described herein.

[0009] FIG. 2 is a table that stores component ID infor
mation, version information, and additional information
according to the system described herein.

[0010] FIGS. 3A and 3B illustrate a linked list that stores
component ID information, version information, and addi
tional information according to the system described herein.

[0011] FIG. 4 is a ?ow chart illustrating updating/adding
a version number for a software component according to the
system described herein.

[0012] FIG. 5 is a ?ow chart illustrating constructing a
table of components and corresponding versions according
to the system described herein.

[0013] FIG. 6 is a ?ow chart illustrating obtaining version
information about speci?c target components according to
the system described herein.

[0014] FIG. 7 is a ?ow chart illustrating checking for and
possibly updating out-of-date components according to the
system described herein.

[0015] FIG. 8 is a ?ow chart illustrating determining a
current baseline according to the system described herein.

DETAILED DESCRIPTION

[0016] Described herein are various technologies and
techniques for handling version information for a plurality
of related software components. Various embodiments are
described more fully below with reference to the accompa
nying drawings, which form a part hereof, and which show
speci?c exemplary embodiments for practicing various
embodiments. However, other embodiments may be imple
mented in many different forms and should not be construed
as limited to the embodiments set forth herein; rather, these
embodiments are provided so that this disclosure will be
thorough and complete. Embodiments may be practiced as

US 2007/0220507 A1

methods, systems or devices. Accordingly, embodiments
may take the form of a hardware implementation, an entirely
software implementation or an implementation combining
software and hardware aspects. The following detailed
description is, therefore, not to be taken in a limiting sense.

[0017] The logical operations of the various embodiments
are implemented (1) as a sequence of computer implemented
steps running on a computing system and/or (2) as inter
connected machine modules within the computing system.
The implementation is a matter of choice dependent on the
performance requirements of the computing system imple
menting the embodiment. Accordingly, the logical opera
tions making up the embodiments described herein are
referred to alternatively as operations, steps or modules.

[0018] The system described herein handles version infor
mation for software components. A software component
may be a module, a library, a stand-alone program, or any
other portion of software that may be part of a larger whole
while being released and/or updated separate from at least
some other parts of the whole. A component may have a
version associated with it, where the version indicates the
relative age/release date of the component with respect to
other versions of the same component. Version information
may be in the form of a number, although version informa
tion could also be in the form of letters, other symbols, or
any other appropriate mechanism for indicating relative
age/release date of a component. In some instances, version
information may include major and minor numbers with a
decimal point therebetween (e.g., version 6.3), where the
major number, to the left of a decimal point, indicate
relatively major revisions while the minor number, to the
right of the decimal point, indicate relatively minor revi
sions. The version information may also indicate the lan
guage information for the software (e.g., English, Japanese,
etc.).

[0019] In addition, a group of components may be asso
ciated with an integrated software program, such as a
computer operating system. In addition, there may be a
baseline for the program that represents a minimum set of
components and minimum version numbers for those com
ponents. The baseline may be set by the manufacture/vendor
of the integrated software program. In addition, a particular
integrated software program may have a number of base
lines associated therewith, where each of the baselines
represents a minimum set of components and version num
bers for those components at a particular date. Note also that
the baseline may be used to add or remove components for
an integrated software program, such as an operating sys
tem, by controlling the list of components included with the
baseline. Use of baselines and version numbers is described
in more detail below.

[0020] Referring to FIG. 1, a diagram 20 illustrates a
version module 22 and a version repository data element 24.
The version module 22 manages version information for
components of an integrated software program, such as a
computer operating system, that has many separate, but
usually related, components. As described in more detail
elsewhere herein, the version module 22 may provide ver
sion information about speci?c components and/or may
provide information about a particular baseline for an inte
grated software program. In some instances, described in
more detail elsewhere herein, the version module 22 may be

Sep.20,2007

used to determine if all of the components of an integrated
software program correspond to a particular baseline.

[0021] The version repository 24 contains data used by the
version module 22. In an embodiment herein, the version
repository 24 may be writeable only by trusted processes,
such as processes that install and/or update components of
the integrated software program, trusted processes that
install new applications, etc. Allowing only trusted pro
cesses to modify the version repository is useful because it
helps maintain the integrity of the data/baseline information.
Otherwise, for example, a virus or other malicious program
to damage the baseline data, making it difficult to maintain
the system.

[0022] In some instances, the version repository 24 may
only contain information about a single integrated software
program, such as a computer operating system. In other
instances, it is possible for the version repository 24 to
contain information about more than one integrated software
program. The version repository may also contain version
information about other related programs or components
such as application programs. For example, the version
repository 24 may contain version information about a
particular baseline of a computer operating system as well as
version information about application programs running on
the same computer as the operating system.

[0023] The diagram 20 also shows installation processes
26 that represent processes/programs/components used to
install applications, operating system components, an entire
operating system, library components, or any other module,
component, or portion thereof used on a computer. The
installation processes 26 may be explicitly invoked by a
user, invoked by another application, invoked by the oper
ating system, and/or part of automatically scheduled soft
ware updates that occur periodically. The installation pro
cesses 26 may make calls to, and receive information from,
the version module 22 to obtain version and/or baseline
information therefrom in connection with performing instal
lation.

[0024] The diagram 20 also shows other consumer pro
cesses 28 which make calls to, and receive information
from, the version module 22 to obtain version and/or base
line information therefrom. The other consumer processes
28 may include any process, component, software program,
or collection thereof or portion thereof that uses version
information provided by the version module 22. For
example, it is possible to provide a user application that
displays the versions of applications stored on a user’s
computer and/or displays version information about the
operating system to a user. In addition, other possible
consumer processes 28 include portions of the operating
system that may receive version information about other
components of the operating system in order to, for example,
perform speci?c processing that depends upon the particular
version of the other components. Similarly, it is possible to
have an application that provides particular functionality or
takes some other action depending on the particular version
of other components, applications, and/or portions of the
operating system. Thus, generally, the consumer processes
28 represent any entity that obtains version and/or baseline
information using the version module 22 as described
herein.

[0025] The installation processes 26, and other similar
processes that modify the version repository 24, may be

US 2007/0220507 A1

trusted processes (e.g., processes run by an administrator or
equivalent). In contrast, the consumer processes 28 do not
necessarily need to be trusted processes since the consumer
processes 28 do not alter data in the version repository 24.
However, it is possible to implement a policy where only
certain users/processes are allowed access to version infor
mation.

[0026] The installation process 26 receives installation
data 32 in the form of a new/updated application or com
ponent information. For example, the installation data 32
may be a new application, a new operating system compo
nent, or new version of an already-installed application or
component. The installation processes 26 update the appli
cation or component on a computer system and make
corresponding modi?cations to the version repository 24 to
re?ect the update/new installation. Thus, in general, the
installation processes 26 represents any process or mecha
nism for updating/installing software components on a com
puting system. In an embodiment herein, the installation
processes 26 may include one or both of the CBS and the
MSI installation mechanisms used with the Windows®
operating system and applications running therewith. Thus,
the system described herein may be implemented with any
number of different types of installation programs/processes.
CBS corresponds to the Component Based Servicing API,
which is the application programming interface of a trusted
installation service used to install and service Windows
Vista and Windows Server (Longhorn) components. Client
installers such as Windows Update or Windows Installer
work with CBS to enumerate, install, update, and uninstall
component packages from the system. MSI refers to the
Windows Installer, an engine for the installation of programs
on Microsoft Windows systems. As illustrated in the dia
gram 20, the installation processes 26 may write and/or
modify data in the version repository 24 to update informa
tion regarding an operating system baseline, update version
information about a component installed by the installation
processes 26, update version information about an applica
tion installed by the installation processes 26, or make any
other appropriate modi?cation of the data in the version
repository 24 in accordance with the discussion herein.

[0027] Referring to FIG. 2, a table 40 illustrates one
possible mechanism for storing component version infor
mation in the version repository 24. The table 40 may
represent speci?c version information for components of an
integrated software program installed on a computer (e. g., a
computer operating system). The table 40 may also be used
to represent baseline information for an integrated software
program. Thus, the version repository 24 may contain mul
tiple tables for a single integrated software program: a ?rst
table corresponding to the actual version numbers of com
ponents installed on a computer system and a number of
other tables corresponding to different baselines for the
integrated software program. In other instances, only the
?rst table may be used and, if needed, baseline information
may be obtained from another source, such as directly from
the manufacturer/ vendor of the integrated software program.
In some instances, an integrated software program may be
shipped/ initially installed with baseline information and the
baseline information may be updated periodically (e.g., over
the Internet) as new baselines and possibly corresponding
components are updated/released.

Sep.20,2007

[0028] Each of the elements of the table 40 includes a
component ID data element, a version data element, and
possibly a related data element. The component ID data
element may take on any form appropriate for identifying
software components (e.g., an ASCII string). In some cases,
one or more particular conventions or standards may be used
so that the component ID data may be used by any of the
other consumer processes 28 (and the installation processes
26) that adhere to the convention. Similarly, the version data
element may be in the form of a number, a letter, a symbol,
a group of symbols, or any form appropriate for conveying
symbol information and may be provided according to one
or more particular conventions or standards.

[0029] Thus for, for example, one entry in the table has a
component ID 42a, a corresponding version 42b, and a
related data element 420. The related data element 420 may
be any data related to the component ID 42a and/or the
version 42b, such as the corresponding baseline of the
integrated software program to which the component
belongs, the type of installation used to install/update the
component (e.g., MSI or CBS), or any other appropriate
information. Similarly, another entry of the table 40 has a
component ID 4311, a corresponding version 43b, and related
data 430 while yet another entry of the table 40 has a
component ID 4411, a version 44b, and related data 440. The
table 40 may contain any number of entries corresponding to
any number of components/modules/ applications. The table
40 may be in the form of an array that is indexed by an index
value used to uniquely access an appropriate one of the
entries.

[0030] Referring to FIG. 3A, a diagram 50 illustrates an
alternative embodiment for storing component and corre
sponding version and related data information where the
information is stored in a linked list having a plurality of
entries 52-54 that are linked together in a conventional
fashion. There may be as many entries 52-54 as there are
components corresponding to a particular baseline (and
possibly additional related components/modules/applica
tions). The last one of the entries of the linked list may have
a null value in the next ?eld indicating the end of the linked
list. An initial or head pointer may point to the ?rst one of
the entries 52-54.

[0031] Referring to FIG. 3B, one of the entries 52 is shown
in more detail as including a component ID ?eld 56,
version/related data ?eld 57, and a next ?eld 58. The next
?eld 58 is used to point to the next one of the entries in the
linked list. The component ID ?eld 56 and the version/
related data ?eld 57 are like the component ID, version, and
related data entries discussed above in connection with the
table 40 of FIG. 2.

[0032] Referring to FIG. 4, a ?owchart 70 illustrates steps
performed in connection with updating a version number for
a target component (i.e., a particular component). The pro
cessing illustrated by the ?owchart 70 may be performed, for
example, by the installation process 26 to update data in the
version repository 24 after the installation processes have
installed or updated a component and/or application and/or
any other appropriate software module or a combination of
modules/components tracked by the system described
herein.

[0033] Processing begins at a ?rst step 72 where an index
variable, i, is set equal to one (or some other initial value).

US 2007/0220507 A1

The index variable, i, may be used to iterate through each of
the components. In an embodiment herein, calls may be
made to the version module 22 by the installation processes
26 or by the consumer processes 28 that pass the index in to
the version module 22. The version module 22 uses the
index to access data in the version repository 24. For
example, if the data in the version repository 24 is stored in
a manner like in the table 40 of FIG. 2, the index may be
used to select a speci?c entry of the table 40. Generally,
irrespective of the internal storage mechanism used in the
version repository 24, there is a mapping of index values to
components used by the version module 22 and processes
making calls thereto. The calling process may already know
which indexes correspond to which components or the
calling process may iterate through possible index variables
to ?nd a matching component of interest. If a call is made
to the version module 22 with an index value that does not
correspond to any component (e.g., an index value higher
than the number of components that are being tracked), then
a particular error code is returned to the calling process
indicating that there is no component corresponding to the
index passed thereto. For the discussion herein, a particular
component may be referred to component(n), where n is an
index value corresponding to the particular component. In
an embodiment herein, version information for compo
nent(n) is not cached by the version module but, instead, the
version module 22 checks the data in the version repository
24 each time a request is made for version information.

[0034] Following the step 72 is a step 74 where the calling
process (e.g., a process of the installation processes 26)
obtains information for component(i). The information may
be obtained at the step 74 by having the calling process call
a routine in the version module 22 requesting version
information about the ith component in the version reposi
tory 24. Thus, the installation processes 28 pass the index
variable i to the version module 22 and the version module
returns the component information. In an embodiment
herein, the component information may be provided from
the version module 22 to a calling process, such as the
installation processes 28, in the form of a character string
and, possibly, an error code (with possibly a special error
code indicating that no error has occurred).

[0035] Following the step 74 is a test step 76 where it is
determined if the error code returned by the version module
22 indicates that there is no component in the version
repository 24 corresponding to the index i. If it is determined
at the test step 76 that the error code returned by the version
module 22 indicates that component i does not exist, then
control passes from the test step 76 to a step 78 where a new
component, corresponding to the component being installed
by the installation processes 28, is added to the version
repository 24 by appropriately modifying the data therein.
Following the step 78, processing is complete.

[0036] If it is determined at the test step 76 that there is
component information for component(i), then control trans
fers from the test step 76 to a test step 82 where it is
determined if the target component (component being
updated by the installation processes 28) corresponds to
component(i) retrieved at the step 74. If so, then control
transfers from the test step 82 to a step 84 where the version
information for component(i) is updated. Updating the infor
mation at the step 84 includes modifying the version infor

Sep.20,2007

mation and, possibly, modifying related data information for
the particular component. Following the step 84, processing
is complete.

[0037] If it is determined at the test step 82 that the target
component does not correspond to component(i), then con
trol transfers from the test step 82 to a step 86 where the
index variable, i, is incremented. Following the step 86,
control transfers back to the step 74, discussed above, where
information for component(i) (with the incremented value
for i) is fetched.

[0038] Referring to FIG. 5, a ?owchart 100 illustrates
steps performed by an other consumer process 28 to con
struct a table of component information with versions (and
possibly related data) using data in the version repository 24.
An other consumer process 28 may construct such a table for
a number of reasons, such as having local access to version
information without needing to call the version module 22.

[0039] Processing begins in a ?rst step 102 where an index
variable, i, is set equal to one (or some other initial value).
Following the step 102 is a step 104 where a call is made to
the version module 22 to get information about compo
nent(i). Following the step 104 is a test step 106 which
determines if an error occurred in connection with getting
information about component(i). If not, then control trans
fers from the test step 106 to a step 108 were the new
information fetched at the step 104 is added to the table
being constructed by the other consumer process 28. Fol
lowing the step 108 is a step 112 were the index variable, i,
is incremented. Following the step 112, control transfers
back to the step 104 for another iteration.

[0040] If it is determined at the test step 106 that the
fetching component information at the step 104 resulted in
an error, then control transfers from the test step 106 to a test
step 114 where it is determined if the error indicates that
there is no component corresponding to the value of the
index variable, i. If so, then processing is complete (i.e., all
of the components have been fetched). Otherwise, if some
other error has occurred, then control transfers from the test
step 114 to a step 116 where the error is reported. Reporting
the error at the step 116 (and at other error reporting steps
discussed herein) may be by any appropriate means, such as
reporting the error to a user, logging the error, etc. Following
step 116, processing is complete.

[0041] Referring to FIG. 6, a ?owchart 120 illustrates
steps performed in connection with obtaining version infor
mation about a speci?c target component. Processing begins
at a ?rst step 122 where an index variable, i, is set equal to
one (or some other initial value). Following the step 122 is
a step 124 where a call is made to the version module 22 to
get speci?c component information for component(i). Fol
lowing the step 124 is a test step 126 where it is determined
if attempting to obtain component information at the step
124 resulted in an error. If so, then control transfers from the
test step 126 to a test step 128 where it is determined if the
error indicates that there is no component information
corresponding to the value of the index variable, i. If so, then
control transfers from the test step 128 to a step 132 where
an error is returned indicating that the target component was
not found. Following the step 132, processing is complete.
If it is determined at the test step 128 that the error is
something other than an indication that there is no compo
nent information corresponding to the value of the index

US 2007/0220507 A1

variable, i, then control transfers from the test step 128 to a
step 134 where the error is reported. Following the step 134,
processing is complete.

[0042] If it is determined at the test step 126 that no error
was generated in connection with fetching information for
component(i) at the step 124, then control transfers from the
step 126 to a test step 136 where it is determined if
component(i) corresponds to the target component (the
component of interest). If so, then control transfers from the
test step 136 to a step 138 where the information obtained at
the step 124 is returned to the calling process. Following the
step 138, processing is complete. Otherwise, if it is deter
mined at the test step 136 that the target component does not
correspond to component(i), then control transfers from the
test step 136 to a step 142 where the index variable, i, is
incremented. Following the step 142, control transfers back
to the step 124 for another iteration.

[0043] Referring to FIG. 7, a ?ow chart 160 illustrates
steps performed in connection with checking for (and pos
sibly updating) out-of-date components in connection with a
baseline for an integrated software program, such as an
operating system. As discussed elsewhere herein, a baseline
version of an integrated software program represents a
minimum set of components and minimum version numbers
for those components of the integrated software program.
Thus, if any of the required components are not present or
have a version number that is less than the minimum
required version number to comply with the particular
baseline, then that particular component is deemed to be
out-of-date. Also, as discussed elsewhere herein, baseline
information may be provided in a separate table stored in the
version repository 24 or may be obtained externally, e.g.,
from the vendor/manufacturer of the integrated software
program. The processing illustrated by the ?ow chart 160
may also be run in connection with the baseline being
revised (updated) so that the integrated software version
may be checked (updated) against the new baseline.

[0044] In other embodiments, it is possible to deem a
component that is not present as being up-to-date. That is, if
a particular component is not present, the system does not
attempt to update or add the component but, instead, does
nothing. In such a case, the system handles components that
are not present in the same way the system handles com
ponents that are present and up-to-date.

[0045] Processing begins in a ?rst step 162 where an index
variable, i, is set equal to one (or some other initial value).
Following the step 162 is a step 164 where a call is made to
the version module 22 to get component information for
component(i). Following the step 164 as a test step 166
which determines if an error has occurred in connection with
fetching the component information at the step 164. If so,
then control transfers from the test step 166 to a test step 168
where it is determined if the error detected at the test step
166 indicates that there is no component information cor
responding to the value of the index variable, i. If so, then
control transfers to a step 169 where it is determined if any
components required for the baseline are missing (i.e., if the
current version of the integrated software program does not
have all of the components needed for the baseline). If not,
then processing is complete. Otherwise, control transfers
from the test step 169 to a step 172 where the error is
reported. Following the step 172, processing is complete.

Sep.20,2007

Note also that the step 172 is reached from the step 168 if
the error detected at the test step 166 indicates an error other
than there being no component information corresponding to
the value of the index variable, i.

[0046] If it is determined at the test step 166 that fetching
information for component(i) at the step 164 did not result
in an error, then control transfers from the test step 166 to a
test step 174 where it is determined if the version informa
tion for component(i) indicates that the current version of
component(i) is less than the minimum required version for
the baseline for the integrated software program. If not, then
control transfers from the test step 174 to a step 176 where
the index variable, i, is incremented. Following the step 176,
control transfers back to the step 164 for the next iteration.

[0047] If it is determined at the test step 174 that the
version information for component(i) is less than the mini
mum required version for the baseline, then control transfers
from the test step 174 to a step 178 to report that the current
installed version for component(i) it is less than the mini
mum required version. Optionally, it is possible at the step
178 to also update component(i) to the minimum required
version by, for example, calling an appropriate one of the
installation processes 26. However, the ability to update an
out-of-date component at the step 178 depends upon there
being available appropriate installation/update data 32 for
the component. In some cases, the update data 32 may be
provided through the Internet. If the appropriate data is not
available, then it may not be possible to update the out-of
date component at the step 178. Following the step 178 is the
step 176, discussed above, where the index variable, i, is
incremented.

[0048] Note that, in an alternative embodiment, it is pos
sible to reach a step 178' if it is determined at the step 169
that a particular component required for the baseline is not
present in the integrated software program. This is indicated
by an alternative path 179 from the step 169 to the step 178'.
In such a case, it is possible at the step 178' to call an
appropriate one of the installation processes 26 to install the
missing component. Following the step 178', processing is
complete.

[0049] Referring to FIG. 8, a ?owchart 180 illustrate steps
performed in connection with determining the current base
line for an integrated software program. The steps of the
?owchart 180 assume that it is desirable for one of the
consumer processes 28 to ascertain the particular baseline
for an already-installed integrated software program. Of
course, in some cases (discussed elsewhere herein) baseline
information is readily available in the version repository 24.
However, in cases where baseline information is not avail
able in the version repository 24, it may be desirable to use
the processing illustrated by the ?owchart 180 to ascertain
the baseline of a particular installed integrated software
program.

[0050] Processing begins at a ?rst step 182 where a
baseline variable, BL, is set to the most recent known
baseline that exists for the integrated software program.
Thus, for example, a particular operating system may have
a known set of baselines where one of the known set of
baselines is the most recently released baseline for the
operating system. Following the step 182 is a test step 184
where it is determined if all the components of the integrated
software program have a version that is greater than or equal

US 2007/0220507 A1

to version numbers corresponding to the baseline BL. The
test at the step 184 may be performed using, for example, the
processing illustrated by the ?owchart 160, discussed above.

[0051] If it is determined that the test step 184 that all
components of an integrated software program have a ver
sion number that is greater than or equal to the minimum
required version number for the baseline BL, then control
transfers from the test step 184 to a step 186 where the
baseline BL is returned to the calling process. Following the
step 186, processing is complete.

[0052] If it is determined at the test step 184 that not all
components of the integrated software program have a
version number that is greater than the minimum required
version number for the baseline BL, then control transfers
from the test step 184 to a step 188 where the baseline
variable, BL, is set to be the next earliest baseline for the
particular integrated software program. Thus, at the step
188, the baseline variable, BL, is decremented to an earlier
version of the baseline for the integrated software program.

[0053] Following the step 188 is a test step 192 where it
is determined if the baseline variable, BL, has been decre
mented to be prior to the earliest known baseline for the
integrated software program. If so, then control transfers
from the test step 192 to a step 194 where an error is
reported. Note that, if the step 194 is reached, it means that
there is at least one component of the integrated software
program having a version that is less than the minimum
required version for the earliest known baseline for the
integrated software program. Following step 194, process
ing is complete. If it is determined at the test step 192 that
the baseline variable, BL, is not before the earliest known
baseline for the integrated software program, then control
transfers from the test step 192 back to the step 184,
discussed above.

[0054] Although the subject matter has been described in
language speci?c to structural features and/or methodologi
cal acts, it is to be understood that the subject matter de?ned
in the appended claims is not necessarily limited to the
speci?c features or acts described above. Rather, the speci?c
features and acts described above are disclosed as example
forms of implementing the claims.

1. A method of managing version information for a group
of software components, comprising:

maintaining a version repository containing version infor
mation for all of the components;

determining a baseline for the components, wherein the
baseline represents a minimum version for each of the
components;

modifying data in the repository in connection with
updating at least one of the software components; and

accessing the data in the repository to determine version
information for the components, wherein accessing the
data includes determining whether each of the compo
nents has a version number greater than or equal to a
minimum version number corresponding to a particular
baseline.

2. A method, according to claim 1, wherein the group of
software components corresponds to a computer operating
system.

Sep.20,2007

3. A method, according to claim 1, wherein only trusted
processes modify data in the repository.

4. A method, according to claim 3, wherein any processes
accesses data in the repository irrespective of trust level.

5. A method, according to claim 1, wherein the version
information is a number.

6. Amethod, according to claim 1, wherein accessing data
in the repository includes providing an index value that
corresponds to speci?c component version information.

7. A method, according to claim 6, wherein an error code
is received in response to attempting to access data in the
repository using an index value that does not correspond to
any component.

8. A computer readable medium having computer execut
able instructions for performing the steps recited in claim 1.

9. A system having at least one processor that performs
the steps recited in claim 1.

10. A method of determining if a group of software
components correspond to a particular baseline, comprising:

maintaining a version repository containing version infor
mation for all of the components;

obtaining the particular baseline for the group of compo
nents, wherein the particular baseline represents a mini
mum version for each of the components;

comparing the version information for each of the com
ponents with a corresponding minimum version pro
vided in connection with the baseline; and

determining that a group of software components corre
sponds to the particular baseline if each of the compo
nents has a version number greater than or equal to the
minimum version number corresponding to the particu
lar baseline.

11. A method, according to claim 10, wherein baseline
information about the group of components is stored in the
version repository.

12. A method, according to claim 10, wherein the group
of software components corresponds to a computer operat
ing system.

13. A method, according to claim 10, wherein the version
information is a number.

14. Amethod, according to claim 10, wherein component
version information is accessed by providing an index value
that corresponds to speci?c component information.

15. A method, according to claim 14, wherein an error
code is received in response to attempting to access com
ponent version information using an index value that does
not correspond to any component.

16. A computer readable medium having computer
executable instructions for performing the steps recited in
claim 10.

17. A system having at least one processor that performs
the steps recited in claim 10.

18. A method of adding components to an integrated
software program having multiple components, comprising:

providing the integrated software program with a ?rst
baseline, wherein the ?rst baseline indicates which
components are part of the integrated software pro
gram;

revising the ?rst baseline to provide a second baseline,
wherein the second baseline includes at least one
component not present in the ?rst baseline; and

US 2007/0220507 A1

running an update process on the integrated software
program using the second baseline, Wherein, in
response to the update process detecting at least one
component in the second baseline that is not in the
integrated software program, the update process causes
the at least one component to be added to the integrated
softWare program.

Sep.20,2007

19. A method, according to claim 18, Wherein the inte
grated softWare program is a computer operating system.

20. A computer readable medium having computer
executable instructions for performing the steps recited in
claim 18.

