OLED Activity and Technology Development

Furong Zhu

Institute of Materials Research and Engineering Singapore

Symposium on Sustainability Driven Innovative Technologies, May 7-8, 2009, Hong Kong

Outline

- What is an OLED?
- What is the Promise of OLED? OLED Applications and Market Share **Progress with OLED Performance** Advances in OLED Panel Technologies **Solution Printing Technologies OLED** Opportunities & Challenges

What is an OLED?

- OLED = Organic Light-Emitting Diode
- OLEDs are semiconductor devices
- Construction of OLED
 - Substrate
 - TCO film (anode)
 - Hole transport layer
 - Emissive layer
 - Electron transport layer
 - Metal film (cathode)

Principle – How does it work?

Holes and electrons, injected from anode and cathode, combine to release energy thereby producing light.

Examples of materials Cathode: Ca/Ag, Li:Al, Mg:Ag, etc. **Emitter:** EL organic, Alq₃, etc. HTL and EHL Anode: ITO, IZO,

Substrate: Rigid & flexible

Conventional OLED

TOLED

Balancing of electron and hole currents

Top-emitting OLED

Sony 11" TV uses TOLED cavity tuning + Color Filter

Conventional bottom emission OLED displays

- Color filter to improve the gamut
- Cavity structure for color tuning
- TOLED structure with a large aperture
- LTPS backplane for AMOLED displays

What is the Promise of OLED?

- Contrast ratio
- Response time
- Wider viewing angle
- Total display thickness
- Low power consumption

> 10,000:1

< 1.5mm < 50% of LCD

- The most important attribute has become the simple device structure that can significantly reduce manufacturing cost
- As LCDs continue to improve, it is clear that OLEDs must deliver a significant cost advantage to become mainstream

OLED's simpler structure leads to low cost

LCD is a gray scale shutter for light

OLED is primary a color light source

Power Efficiency: Less power better picture

SOURCE: Samsung SDI Stand, FPD Yokohama, October 2006

Power consumption in AMOLED & AMLCD

Panel	Active Area (cm ²)	L _{peak} (nits)	P _{max} (Watt)	P1 (W) Cartoon	P2 (W) Action film	P3(W) Mystery
8" AMLCD DVD Player (LTA0808332A)	175	135	3.89	3.89	3.89	3.89
7" AMLCD DVD Player (LB070W02)	132	106	2.54	2.54	2.54	2.54
7" AMOLED	146	150 (with circular polarizer)	2.81	1.00	0.71	0.52

Best fit with battery-powered applications

Source: DuPont Displays

vered application

OLED development

- 1989 OLED was discovered in a useful form, Kodak
- 1991 University research, Cambridge
- 1994 Launch of industrial R&D
- 1998 First OLED product on the marketplace
- Today New OLED industry

OLED Market forecast to reach \$6B by 2121

OLED Market size from DisplaySearch 2007

OLED display market forecast

OLED display market forecast

	2008	2009	2010	2011	2012	2013	2014
OLED Market (U\$M)	1,400	1,840	2,252	2,758	4,214	5,499	7,276
PMOLED (U\$M)	600	800	900	1,000	1,050	1,070	1,075
AMOLED (U\$M)	800	1,040	1,352	1,758	3,164	4,429	6,201

Source: DisplaySearch, isupply

OLED Applications _ Displays

low-cost simple displays and lighting panels, signage, merchandising, keypad lighting, toys etc

Samsung Electronics:40" AM-OLED Demonstrator in 2005/6: White EL on C/F

OLED Applications _ AMOLED TVs

SONY

• Started to sell 11" OLED TV

SAMSUNG

- 2 million 2" panel in Q4 2007
- 21" (2009), 42" (2010)

CMEL

• 32" (2010) w/ UDC's PHOLED material

Sumitomo Chemical

• Acquired CDT(2007), P-OLED TV (2009)

Toshiba

• 20" TV (2009) w/ TMD panel

LG Philips LCD

• 3" and 2.2" AMOLED, OLED TV(2008)

Epson

• 2" and 7" w/ small molecule (2009)

Sony 11" OLED TV

Feature	Specification
Screen size	11"
Number of pixels	1,024(H)×600(V) (W-SVGA)
Contrast ratio	>1,000,000:1
Brightness	All white: 200 cd/m ² Peak: > 600 cd/m ²
Numbers of colors	16.7 million colors (8 bits/color, >100% NTSC)
Device structure	'Super' top emission structure

OLED Applications _ Lighting

NEC OLED lighting 15cm x15cm

EL Lighting

Matsushita Electric

Large size white OLED panel: 30cmx30cm

OLED Applications _ Lighting

Current Status:

- Novaled: 35 lm/W, lifetime100K@1000 cd/m²
- UDC: ~ 40 lm/W
- Eastman Kodak: 50 lm/W (2008)

Future Target:

• 100-150 lumens/W for OLED lighting in the long run

Potential Manufacturers:

- Osram Opto Electronics
- Philips
- GE
- Matsushita Electric
- NEC

OLED Applications _ Flexible displays

- Potential benefits:
 - New product design opportunities
 - Portable devices with large, storable displays
 - Lightweight and robust
 - Lower production costs through R2R
 manufacture

Glass displays have limitations...,

Serviceable Market vs. Display Lifetime

Military

* High Brightness

OLED Displays

Flexible OLED Challenges

Transparent, robustBarrierTransparent, reduced permeability to O2, H2OCathode (e.g., Ba,Ca,Al)Transparent for top emission , high conductivityOrganic layer stackHTL, Interlayer, LEPAnode (e.g., ITO)Transparent for bottom emission, high conductivityBackplaneTFTs, tracks, vias and planarisationBarrierTransparent, reduced permeability to O2, H2OSubstrateTransparent, Robust, thermally stable

Encapsulation film

T50 (1000 cd/m ²)	Performance Data				
	Red (phosphorescent)	Green	Blue	White	
Efficiency (cd/A)	10	16	9	7	
Colour (at 100 cd/m ²)	x= 0.67 y= 0.32	x= 0.29 y= 0.64	x= 0.14 y= 0.21	x= 0.33 y= 0.31	
Lifetime (spin) (hrs)	24k	35k	10k	5.2k	
Equivalent lifetime at 400 cd/m ² (hrs)	150k	198k	62k	27k	
Equivalent lifetime at 100 cd/m ² (hrs)	~ 2.4m	~ 2.8m	~ 1m	~ 330k	

Sumation: 11th April 2007-MRS 2007 San Francisco

OLED performance_ lifetime issue

	Colour	CIE (x,y)	Cd/A	T50 LT/k hrs @ 1000nits	Reference
DuPont	Blue	0.14, 0.14	4	10	SID 2007
UDC	Blue	0.16, 0.27	11 (Lm/W)	6 (at 500cd/m2)	
Idemitsu	Blue	0.14,0.16	11	20	Finetech 2007
Sumation	Blue	0.14, 0.19	9	10	OEC-07
DuPont	Red	0.66, 0.34	21	46	SID 2007
UDC	Red	0.64, 0.36	20	330	SID 2007
Idemitsu	Red	0.67, 0.33	11	160	SID 2007
Sumation	Red	0.67, 0.32	10	67	OEC-07
DuPont	Green	0.29, 0.65	24	230	SID 2007
UDC	Green	0.38, 0.59	67 (Lm/W)	250	SID 2007
Idemitsu	Green	0.33, 0.63	36	64	Finetech 2007
Sumation	Green	0.29, 0.64	16	78	OEC-07
Kodak	White	0.32, 0.34	13	50	OledAsia 2006
Sumation	White	0.33, 0.31	8	8	OEC-07

Method of Color Patterning

W-RGB vs. W - RGBW

White-Emitting Layer with RGE RGB)	B Color-Filter Array (W-
(Advantages)	(Disadvantages)
-No mask (un-patterned EL layer) -Enabled by high-efficiency white -Fewer OLED processing step -Reduced deferential aging	 Efficiency loss due to filter absorption Gamut controlled by white spectrum
White-Emitting Layer with W-	RGB Color-Filter Array
 -No mask (un-patterned EL layer) -High efficiency white sub-pixel results significantly power reduction (a large portion of image content contains white) -Enabled by high-efficiency white 	- Efficiency loss due to filter absorption

RGB vs. White OLED + Color Filter

RGB vs **RGB**W

• Displays from Kodak

		Example		Dot	Color	1
Model	Size	Application	Technology	Count	Arrangement	
ALE251	2.2	DSC	RGB+PSM ²	521x218	RGB Delta] F
ALE247	2.2	Cell Phone	RGB+PSM	528x220	RGB Stripe	1
ALE257	2.2	Cell Phone	W+CFA ³	528x220	RGB Stripe	
ALE258	2.2	DSC	W+CFA	521x218	RGB Stripe	1
ALE269	2.5	Cell Phone	W+CFA	720x320	RGB Stripe	
ALE269W	2.5	Cell Phone	W+CFA - RGBW ⁴	720x320	RGBW Stripe	
ALE255	1.9	DSC	W+CFA	521x218	RGB Delta	1
ALE334	3.5	PDA	W+CFA - RGBW	968x322	RGBW Stripe]
ALE2931	2.2	DSC	W+CFA - RGBW	862x240	RGBW Delta	F
ALE2941	2.5	DSC	RGB+PSM	720x240	RGB Delta	k

Product: Kodak LS633 DSC (2003)

Product: Sanyo Xacti DVC (2006) Kodak's AM635LX (2005)

Kodak: RGB and RGBW technologies

PMOLED and AMOLED

Source: IMRE

PM vs AM	PMOLED	AMOLED
Emission Period	Line Time	Frame Time
Driving Current	High	Low
OLED Driving Voltage	High (>12V)	Low (~8V)
Life Time	Short	Long
Power Dissipation	Probably High	Probably Low*
Limitation of size	Small	Larger

AMOLED

Source: UDC AMOLED for high density and large size displays

TFT-AMOLEDs: Benefits from LTPS

■ AR increased → Current density reduced → Lifetime improved

PMOLED vs AMOLED

PMOLED

Requires cathode patterning High-pulsed drive currents Number of rows limited to <240 Shorted pixels result in cross-talk or line defect

Significant capacitance issue

Simple structure/fabrication

Much lower manufacturing cost compare to AMOLED. However, PMOLEDs command much lower price compare to AMOLED

AMOLED

Each pixels can ON for entire frame time (not pulsed as PMOLED)-

Better operation stability

Short defects result unlit pixels. AM circuits prevents cross-talk

Lower current pulses and lower capacitances allows much larger display

Non-uniformities in LTPS backplanes results in display non-uniformities

High manufacturing cost associated with AM substrate

OLED process technologies

Items	Evaporation (Shadow Mask)	Ink-Jet Printing	LITI
	Substrate Fine Metal Mask Source		Laser
Materials	Small Molecule (SM)	Polymer (LEP)	LEP, SM, Hybrid
Position Accuracy	± 15µm	± 10µm	± 3.5µm
Resolution	~200ppi	~200ppi	~400ppi
Aperture Ratio (Top Emission)	30~50%	40~50%	40~60%
Remarks	 M/P: Gen. 2 Develop: Gen. 4 Glass handle limit Mask align limit 	 Size: >2m Simple/Economic process Material development issue 	 Size: >4G Dry Patterning /multi-stacking Donor film required

New Technologies_ OVPD

Organic Physical Vapor Deposition (OPVD)

Key advantage of OVPD

Scalability: Large area Deposition

- Close Coupled Showerhead

(Uniform, efficient, no increase the source temperature)

- Throughput (High deposition rate)
- Yield

(Fast layer switching valve, precise deposition control by mass flow controller, simple contamination control and particle control)

-Reduced running cost

(materials consumption, uptime, investment and facilities cost)

-Full color OLED

Large area OLEDs made by OPVD

Source: Kodak

FPD technologies

A paradigm shift in future display technologies

-High cost, new materials, large substrate, fabrication tech

Solution printing technologies

Solution process_ R2R printing

- 5" displays demonstrated by Toppan
 - 70 ppi resolution (>200 ppi is feasible)
 - 360 μm pixel pitch
 - Thickness variation ~4%, luminance
 - No need any patterning
 - Save cost and processing time

Source: Toppan Printing, Proceedings of IDW/AD 06

Solution process_ inkjet printing

Seiko Epson: IJP 40" OLED TV

CDT is leading IJP technologies:

- High scalability using multi-nozzles
- Very complex and relatively slow

CDT: IJP 14" OLED TV

Challenges and Opportunities

- <u>Materials</u>: blue & white EL, low-cost ITO alternatives
- **Process**: scalable, cost, high yield
- TFT Backplane: compatible with existing LCD technology and infrastructure
- Encapsulation: low cost, design flexibility, OLED lifetime must be improved to meet commercial specifications
- <u>A Killer Application</u>: flexible or preformed OLED displays, WOLED lighting or backlight...
- **OLED Industry:** still in the early stage of development
- **OLED Market Image:** slow but steady market penetration

Challenges and Opportunities

- **OLED Displays** will have more market share for portable applications (display quality, thickness, light weight etc)
- **<u>PMOLED</u>**: tech is matured & recognized by the market
- <u>AMOLED</u>: TFT backplane technology is the key with promising progresses, top-emission is crucial
- **Driving Tech** for AMOLED is still under development
- <u>Color-by-White</u> is promising (one device stack, higher yield, & more reproducible, high performance WOLED is needed)
- **Solution Printing** tech is viable for large size and low cost
- <u>FOLED</u> will be very attractive for application in conformal, fordable or even flexible lighting and displays

Thank you

