

AN

2006:632054 BIOSIS

DN

PREV200600633817

TI

The hormone-sensitive lipase C-60G promoter polymorphism is associated with increased waist circumference in normal-weight subjects.

AU

Carlsson, E. [Reprint Author]; Johansson, L. E.; Strom, K.; Hoffstedt, J.; Groop, L.; Holm, C.; Ridderstrale, M.

CS

Lund Univ, Malmo Univ Hosp, Dept Clin Sci Diabet and Endocrinol, S-20502
Malmo, Sweden
emma.carlsson@med.lu.se

SO

International Journal of Obesity, (SEP 2006) Vol. 30, No. 9, pp. 1442-1448.
CODEN: IJOPDP. ISSN: 0307-0565.

DT

Article

LA

English

ED

Entered STN: 22 Nov 2006
Last Updated on STN: 22 Nov 2006

AB

Objective: Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from triglyceride stores in adipocytes. The aim of the present study was to investigate the role of the HSL gene promoter variant C-60G, a polymorphism which previously has been associated with reduced promoter activity *in vitro*, in obesity and type 2 diabetes.
Design: We genotyped two materials consisting of obese subjects and non-obese controls, one material with offspring-parents trios, where the offspring was abdominally obese and one material with trios, where the offspring had type 2 diabetes or impaired glucose homeostasis. HSL promoter containing the HSL C-60G G-allele was generated and tested against a construct with the C-allele in HeLa cells and primary rat adipocytes. HSL mRNA levels were quantified in subcutaneous and visceral fat from 33 obese subjects.
Results: We found that the common C-allele was associated with increased waist circumference and WHR in lean controls, but there was no difference in genotype frequency between obese and non-obese subjects. There was a significant increased transmission of C-alleles to the abdominally obese offspring but no increased transmission of C-alleles was observed to offspring with impaired glucose homeostasis. The G-allele showed reduced transcription in HeLa cells and primary rat adipocytes. HSL mRNA levels were significantly higher in subcutaneous compared to visceral fat from obese subjects.
Conclusion: The HSL C-60G polymorphism is associated with increased waist circumference in non-obese subjects.

CC

Cytology - Animal 02506
Cytology - Human 02508
Genetics - General 03502
Genetics - Animal 03506
Genetics - Human 03508
Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
Biochemistry studies - Lipids 10066
Biochemistry studies - Carbohydrates 10068
Pathology - General 12502
Nutrition - General studies, nutritional status and methods 13202
Nutrition - Malnutrition and obesity 13203

IT

Major Concepts
Molecular Genetics (Biochemistry and Molecular Biophysics); Nutrition;
Human Medicine (Medical Sciences)

IT

Parts, Structures, & Systems of Organisms
adipocyte; subcutaneous fat; visceral fat

IT

Diseases
obesity: nutritional disease

Obesity (MeSH)

IT

Chemicals & Biochemicals
triglycerides; mRNA [messenger RNA]; hormone-sensitive lipase;
glucose: homeostasis

IT

Miscellaneous Descriptors
waist circumference; allele transmission

ORGN

Classifier
Hominidae 86215
Super Taxa
Primates; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
HeLa cell line (cell_line)
human (common): adult, middle age, female, male
Taxa Notes
Animals, Chordates, Humans, Mammals, Primates, Vertebrates

ORGN

Classifier
Muridae 86375
Super Taxa
Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
rat (common)
Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
Rodents, Vertebrates

RN

9001-62-1 (hormone-sensitive lipase)
58367-01-4 (glucose)

GEN

human HSL gene [human hormone-sensitive lipase gene] (Hominidae):
promoter polymorphism, G-allele